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Audio-Visual Multi-Channel Integration and
Recognition of Overlapped Speech

Jianwei Yu
Shoukang Hu

Abstract—Automatic speech recognition (ASR) technologies
have been significantly advanced in the past few decades. However,
recognition of overlapped speech remains a highly challenging task
to date. To this end, multi-channel microphone array data are
widely used in current ASR systems. Motivated by the invariance
of visual modality to acoustic signal corruption and the additional
cues they provide to separate the target speaker from the interfering
sound sources, this paper presents an audio-visual multi-channel
based recognition system for overlapped speech. It benefits from a
tight integration between a speech separation front-end and recog-
nition back-end, both of which incorporate additional video input.
A series of audio-visual multi-channel speech separation front-end
components based on TF masking, Filter&Sum and mask-based
MVDR neural channel integration approaches are developed. To
reduce the error cost mismatch between the separation and the
recognition components, the entire system is jointly fine-tuned
using a multi-task criterion interpolation of the scale-invariant
signal to noise ratio (Si-SNR) with either the connectionist temporal
classification (CTC), or lattice-free maximum mutual information
(LF-MMI) loss function. Experiments suggest that: the proposed
audio-visual multi-channel recognition system outperforms the
baseline audio-only multi-channel ASR system by up to 8.04%
(31.68% relative) and 22.86% (58.51% relative) absolute WER
reduction on overlapped speech constructed using either simulation
or replaying of the LRS2 dataset respectively. Consistent perfor-
mance improvements are also obtained using the proposed audio-
visual multi-channel recognition system when using occluded video
input with the lip region randomly covered up to 60%.

Index Terms—Overlapped speech recognition, speech
separation, audio-visual, multi-channel, visual occlusion, jointly
fine-tuning.
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I. INTRODUCTION

ESPITE the rapid progress of automatic speech recogni-
D tion (ASR) technologies in the past few decades, recog-
nition of overlapped speech remains a highly challenging task.
The presence of interfering speakers creates a large mismatch
between the target speaker’s clean speech and the mixed signal.
This often leads to large performance degradation of current
ASR systems. To this end, acoustic beamforming techniques
integrating sensor data from multiple array channels are widely
used. These multi-channel array signal integration approaches
are normally implemented as time or frequency domain linear
filters that are capable of “listening” in the target speaker’s
direction while minimizing the effects of noise distortions and
other interfering speakers from other directions. The desired
target speech signal is thus enhanced.

Microphone arrays play a key role in state-of-the-art ASR
systems designed for multi-talker overlapped and far field
speech [1]-[6], often following a traditional speech enhance-
ment prior to recognition based system architecture. These sys-
tems contain two separately developed components: the speech
separation and enhancement front-end module, and the speech
recognition back-end. These two components are often inte-
grated in a pipelined manner. The separation front-end module
is often implemented using conventional beamforming tech-
niques represented by either time domain delay and sum [7],
[8] or frequency domain minimum variance distortionless re-
sponse (MVDR) [9], [10] and the related generalized eigen-
value (GEV) [11] channel integration approaches. The former
uses generalized phase correlation between sensor inputs and a
Viterbi search procedure to estimate the optimal channel delays
and their respective combination weights. The frequency domain
beamforming approaches maximizes the signal to noise ratio
(SNR) of the filtered outputs.

With the successful and wider application of deep learning
based speech technologies, microphone array channel integra-
tion methods have evolved into a variety of neural network (NN)
based designs in the past few years. These NN based methods can
be classified into three main categories including TF masking,
Filter&Sum and mask-based MVDR or GEV. In contrast to
the traditional mask based single channel speech separation
methods [12], [13], multi-channel information is fed into DNNs
in the TF masking approaches [14], [15] to predict spectral
time-frequency (TF) mask labels for a reference channel that

2329-9290 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:36:14 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-2449-1436
https://orcid.org/0000-0001-6202-5615
https://orcid.org/0000-0002-3345-6923
https://orcid.org/0000-0001-6725-1160
https://orcid.org/0000-0003-0520-6844
mailto:jwyu@se.cuhk.edu.hk
mailto:ssliu@se.cuhk.edu.hk
mailto:skhu@se.cuhk.edu.hk
mailto:mzgeng@se.cuhk.edu.hk
mailto:xyliu@se.cuhk.edu.hk
mailto:hmmeng@se.cuhk.edu.hk
mailto:auszhang@tencent.com
mailto:lambowu@tencent.com
mailto:dyu@tencent.com

2068

specify whether a particular TF spectrum point is dominated by
the target speaker or interfering sources to facilitate speech sep-
aration. The neural Filter &Sum approaches directly estimate the
beamforming filter parameters in either time domain [16]-[18]
or frequency domain [19] to produce the separated outputs. The
mask-based MVDR [4]-[6], [20]-[23] and related mask-based
GEV [24], [25] approaches predict the TF masks using DNNs
before estimating the power spectral density (PSD) matrices for
the target and overlapping speakers to obtain the beamforming
filter parameters. Compared with the conventional stand-alone
beamforming approaches, these neural based methods allow
a tighter integration with the downstream recognition back-
end [5], [6], [19], [25], [26]. Large performance improvements
have been reported for overlapped speech recognition tasks by
using microphone array based multi-channel inputs [5], [6].
However, the current systems’ performance gap between over-
lapped and non-overlapped speech remains large.

Inspired by the bi-modal nature of human speech perception,
there has been increasing interest in incorporating visual in-
formation into the speech separation and recognition systems
for far-field and overlapped speech. The advantages of these
approaches are three folds: 1) visual information contains ad-
ditional cues such as lip movements that differentiate the target
speech from other interfering sources; 2) lip movements can
provide further information over articulation to improve pho-
netic discrimination; 3) visual modality is usually invariant to the
acoustic signal corruption in noisy or multi-talker environment.
Previous research has successfully used visual information to
improve single-channel overlapped speech separation [27]-[29]
and recognition [30]-[32] performance. Recently there has also
been increasing efforts in developing audio-visual multi-channel
input based speech enhancement systems designed for speech
separation [33] and de-reverberation [34]. However, currently
there is a lack of holistic, full incorporation of visual informa-
tion into both the front-end speech separation module and the
back-end recognition component.

Performance of audio-visual overlapped speech separation
and recognition systems crucially depends on the quality of the
video input in terms of the complementary information being
provided on top of the audio. Such sensitivity can be demon-
strated by, for example, when the mouth area is obstructed by a
mask (often required in the current pandemic), a microphone, or
if the speaker stands far away from the camera (low-resolution
video inputs). Only limited previous research was conducted
to investigate the system fragility to the aforementioned video
occlusion and low-resolution video input problems. In [35], the
authors applied dropout to parts of the DNN acoustic model of
a single channel audio-visual speech recognition system con-
nected to the video input during model training to improve the
resulting system’s robustness. In [29], the comparable effect in
audio-visual speech separation was investigated by using video
with artificial occlusion over the mouth region. However, there
has been very limited previous research investigating the perfor-
mance sensitivity to video occlusion and low-resolution video
inputs in the context of a complete audio-visual multi-channel
recognition system of overlapped speech.
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In order to address the above issues, an audio-visual multi-
channel overlapped speech recognition system featuring tightly
integrated separation front-end and recognition back-end is pro-
posed in this paper. Firstly, for the speech separation front-end,
a series of audio-visual microphone array channel integration
methods including TF masking, Filter&Sum and mask-based
MVDR are proposed respectively. Secondly, in order to reduce
the error cost mismatch between the separation and the recog-
nition components that are traditionally trained on different
objective functions, they are jointly fine-tuned using a multi-task
criterion interpolation of the scale-invariant signal to noise ratio
(Si-SNR) with either the connectionist temporal classification
(CTC) [36], or lattice-free maximum mutual information (LF-
MMI) [37], [38] loss function. Thirdly, this paper investigates the
influence of visual occlusion and low-resolution visual inputs on
the proposed systems. To improve the robustness of audio-visual
multi-channel speech recognition systems to visual occlusion,
both angle features provided by video cameras mounted on a
microphone array and multi-style training consisting of occluded
video of lip region coverage up to 80% are used. In addition,
the image in-painting technique [39] is also investigated to
restore the occluded video inputs for the visual occlusion issue.
Experiments suggest that: 1) the proposed audio-visual multi-
channel recognition system outperforms the baseline audio-only
multi-channel ASR systems by up to 8.04% (31.68% relative)
and 22.86% (58.51% relative) absolute WER reduction on over-
lapped speech constructed using either simulation or replaying
of the LRS2 dataset; 2) consistent performances improvements
are obtained across all audio-visual multi-channel systems when
multi-task criterion based joint fine-tuning is used in place of
a pipelined configuration. In particular the jointly fine-tuned
audio-visual multi-channel system using mask-based MVDR
beamforming produced WER reductions by up to 4.2% (19.7%
relative) and 5.1% absolute (25.4% relative) on the simulated
and the replayed data over the pipelined system; 3) consistent
performance improvements are also obtained using the proposed
audio-visual multi-channel recognition system when even using
occluded video input with the lip region randomly covered up
to 60%.

In summary, this work makes three main contributions:

® This paper presents the first work on incorporating visual
inputs in both the speech separation front-end and the
recognition back-end within a bimodal and multi-channel
inputs based overlapped speech recognition system. A
systematic overview and comparison over three different
audio-visual channel integration methods featuring a tight
integration between the separation and the recognition
components is given. In contrast, video information is
added into only either the separation front-end [27], [28],
[40], or the recognition back-end alone [31], [41], [42]. A
more holistic use of video cues as investigated in this paper
was not considered.

e This s the first work that uses an interpolated error cost that
combines the lattice-free MMI based sequence discrimina-
tive training criterion and the scale-invariant signal to noise
ratio (Si-SNR) metric to integrate the separation front-end
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and recognition back-end. In contrast, the previous re-
search focused on using cross entropy based error cost [5],
[6], [43] in the overall end-to-end system fine-tuning and
integration stage.

e This paper presents the first more complete attempt to
investigate the effect from video input occlusion on both
the separation and the recognition components as well as
the final system performance on overlapped speech.

In contrast, the previous investigation on the effect from oc-
cluded video is limited to either the separation module [29]
or recognition [35] component.

The rest of the paper is organized as follows. Section II
introduces three neural network based multi-channel integration
methods. Section IIT presents various forms of audio-visual
multi-channel speech separation networks. Description of the
recognition back-end components and their integration with
the separation front-end are given in Section IV. Experimental
results are presented in Section V. Section VI draws the conclu-
sions and discusses possible future directions.

II. MULTI-CHANNEL SPEECH SEPARATION
A. Multi-Channel Signal Model for Overlapped Speech

Ignoring the reverberation in the overlapped speech, the
spectrum of the received speech signal X,.(¢, f) recorded by
a far-field microphone array composed of R channels can be
modeled as:

Xr(taf):Yr(t»f)+Nr(t»f)v (1

where X,.(t, f), Y. (t, f) and N, (¢, f) denote the short-time
Fourier transform (STFT) spectra of the overlapped, target and
interfering speech received by the rth microphone respectively.
Without loss of generality, we select the first channel as the
reference channel (r = 1) in this paper.

B. TF Masking

To separate the target speaker from other interfering sources,
the TF masking approaches have been widely used in monaural
speech separation tasks in the past few decades [12], [26], [44],
[45]. Such approaches predict spectral TF mask labels that
specify whether a particular TF spectrum point is dominated by
the target speaker or other interfering sources to facilitate speech
separation. Recently, several researches have shown that inte-
grating the multi-channel information collected by a microphone
array can improve the mask estimation of the reference channel
and lead to better speech separation. It has been found in previous
research that the complex ratio masks (CRMs) outperform both
the binary masks (BMs) and real-value ratio masks (RMs) on
speech separation [26], [46] and enhancement [47] tasks. For this
reason, the CRM based TF masking approach is implemented in
this work. The complex spectrum of the separated output Y (¢, f)
is computed as follows:

Y(t, f) = M(t, f)X(t, f)
= R{M(t7 f)}R{XT(t7 f)} - I{M(tv f)}I{Xr(t’ f)}
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+ (@M@, F)YRAX (8 £} + RAM (¢, £)}I{X (8, f) }
)
where M(t, f) € C is the CRM of the target speaker and
R{-}Z{-} denote the real/imaginary parts of a complex number
respectively. Although the TF masking approach can provide
perceptually enhanced sounds, it has been reported that the ar-
tifacts resulting from deterministic spectral masking introduced

a negative impact on downstream speech recognition system
performance [2], [4], [23].

C. Multi-Channel Integration Using Beamforming

The acoustic beamforming approaches are designed to capture
sound coming from the target speaker direction while reducing
interfering sounds coming from other directions. This is real-
ized by setting the beamformer filter parameters to the target
direction. A linear filter

W(f) = [Wl(f)7W2(f)ﬂ BN WR(f)]T

is applied to the multi-channel overlapped speech spectrum
vector

X(t, f) = [Xa(t, f), Xa(t, ), Xr(t, )"
as follows:
Y(t, f) = W(f)'X(t, f)
=W+ W()'NE ), O

speech

noise

where (-)! denotes the conjugate transpose. The beamforming
filter parameters in conventional beamformers are usually ob-
tained by first estimating the steering vector, which requires the
direction-of-arrival (DOA) of the target speaker before solving
an optimization problem, such as MVDR beamformer. With the
successful and wider application of deep learning based speech
technologies, state-of-the-art neural beamforming techniques
are represented by the following two approaches: 1) using NNs
to directly estimate beamforming filters as in Filter&Sum [17]-
[19]; 2) using TF masks to estimate beamforming filters as in
mask-based MVDR or GEV [4], [21], [23].

D. Filter and Sum

The neural Filter&Sum beamforming approaches directly
estimate the beamforming filter parameters in either time do-
main [16]-[18] or frequency domain [19] base on deep neural
networks in a fully-trainable fashion. In this work, we adopt a
frequency domain Filter&Sum approach to produce the sepa-
rated output as follows:

Y(t, ) = Wit )UX(t, £) = SO Wilt, £« X, (4, ). ()

One limitation associated with the Filter&Sum beamformer is
that the estimated filter parameters are allowed to change over
very short analysis intervals, for example, between neighbour-
ing frame windows of 25 milliseconds. In practice this is an
unrealistic assumption as the speech from a target speaker tends
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to remain from the same direction over a longer period of time
when collected using fixed microphone arrays, before he or she
moves to a different position in the room.

E. Mask-Based MVDR

When choosing the rth channel as the reference channel,
the residual signal distortion &, 4(¢, f) and the residual noise
&n(t, f) can be computed by Equation (5) and Equation (6)
respectively:

gr,d(t7 f) = Yr(t> f) - W(f>HY(t7 f) (5)
= (U, = WM"Y, f),
&nlt, ) = W(f)'N(t, f) (©6)

where U, = [0,0,...,1,...,0]7 is a one-hot vector of which
the rth entry equals to 1. The MVDR beamformer is designed
to minimize the noise output while imposing a distortionless
constraint on the target speech signal [10]:

vrgl(% Et{|fn(taf)|2}

subject to : Ei{|&.a(t, )|’} =0

The distortionless constraint in the above optimization problem
is equivalent to W(f)"G(f) = 1, which can be interpreted as
maintaining the energy along the target direction. It can be shown
that the solution of the above MVDR beamformer is:

®.(f) 'G(f)

W= Gy 6 "
_ qm(f)*?f(f) .. ®
Trace(®,,(f)  ®,(f))
where @, (f) = E{N(t, /)N(t, /)"} and  @,(f) =

E{Y(t, f)Y(t, f)!} are the PSD matrices of the noise
and target speech respectively. The MVDR filter parameter
estimation in Equation (7) is expressed in terms of the noise
PSD matrices and the steering vector. Alternatively it can also
be re-expressed using both the target speech and noise PSD
matrices as in Equation (8).

In mask-based MVDR approaches, the deep neural networks
are used to estimate the real-value [4], [5], [23] or complex [26]
TF masks of the target speech MY (t, f) and other interfering
sources M" (¢, f) respectively. The PSD matrices corresponding
to each source can be calculated with the estimated TF masks
shown as follows:

S (MY f) # X (8 ) (MY(E )+ X (8 )Y
Zf:l My(t> f) * (My(t7 f))H

XL M) X )OI )+ X D
Zthl M”(t’ f) * (Mn<t7 f))H

@, (f)

)

@, (f)

C))

The MVDR beamformer filters can then be obtained using
Equation (8). Compared with both the TF masking and the
Filter &Sum approaches, mask-based MVDR beamformers using
the spatial temporal correlation in the PSD matrices to enforce
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a consistent set of filter parameters to be estimated over the
analysis window, in which the location of the speakers are un-
changed. Hence, the processing artifacts observed in the former
two approaches can be minimized. This is particularly useful
when modelling the short speech segments within which the
target speaker voice is recorded from the same direction using the
array. Compared with both the TF masking and the Filter &Sum
approach, the mask-based MVDR approach retains a consistent
DOA estimation with a beamforming analysis window over, for
example, an utterance of speech and the minimum distortion
constraint in traditional MVDR beamforming. The mask-based
MVDR approach has demonstrated state-of-the-art performance
in noisy and overlapped speech recognition [4], [5], [23].

III. AUDIO-VISUAL MULTI-CHANNEL SPEECH SEPARATION

In this section, we introduce the proposed audio-visual multi-
channel speech separation networks using TF masking, Fil-
ter&Sum and mask-based MVDR channel integration methods.

A. Audio Modality

In the proposed separation front-ends, three types of audio
features including the complex spectrum, the inter-microphone
phase differences (IPDs) [4] and the location-guided angle
feature (AF) [22], [40] are adopted as the audio inputs. The
detailed paradigm of the audio modality processing is illustrated
in the top left corner of Fig. 1. The complex spectrum of all
the microphone array channels are first computed through the
STFT. Following the same recipe as in [33], the IPD feature is
calculated as follows:

0,7 _ Xl(tvf)
IPDI) (¢, f) _4<Xj(t7f)>,

where X; (¢, f) represents the i-th channel’s complex spectrum
of the mixed signal at time frame ¢ and frequency bin f, (7, j)
corresponding to the selected microphone pair and /(+) outputs
the angle of the input argument. The IPD feature captures
the relative phase difference between microphones, which is
correlated with the time difference of arrival (TDOA).

In addition, when the geometry of the microphone array and
the direction of arrival (DOA) of the target speaker 6 are given,
the steering vector corresponding to the target speaker can be
computed as:

(10)

G(f) _ [efjw% cos(O)’ efjw% cos(0) , efj% cos(e)}

e o

where dy, is the distance between the first (reference) and rth
microphone (d;; = 0). c is the sound velocity.

Based on the computed steering vector, the location-guided
AF feature introduced in [22], [33] are also adopted to provide
discriminative information for the target speaker as follows:

<VeC(Gj(f)),VeC<X"’(t’f))>

{(i,5)} HV@C(?:’&)H : HV@C(?E?B)H
where || - || denotes the vector norm, (-, -) represents the inner

product and {(i,5)} denotes the selected microphone pairs.
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Illustration of the proposed audio-visual multi-channel speech separation networks, where X (¢, f) is the complex spectrum of each channel. V(¢) and

A(t) denote the audio and the visual embedding at frame index ¢ respectively. The detailed paradigm of the TCN block is demonstrated in Fig. 2. (a), (b) and (c)
represent three options of channel integration approaches: (a) TF masking: M (¢, f) represents the complex mask of the target speaker, where R{(M (¢, f)}) and
I{(M(t, f)} are the real and the imaginary part of the mask respectively; (b) Filter&Sum: W.(¢, f) denotes the beamforming filter parameters of the rth channel;
(c) Mask-based MVDR: MY(t, f) and M™ (¢, f) are the complex masks of the target and the interfering sources, ®¥ (f) and @™ ( f) are the corresponding PSD

matrices and W (f) is the time-invariant beamforming filter parameters.

vec(+) transforms the complex value into a 2-D vector, where
the real and imaginary parts are regarded as the two vector
components. The design principle of the AF is that if the TF bin
X (t, f)is dominated by the target speaker from direction 6, then
its corresponding AF(t, f) will be close to 1, otherwise close to
0. In this work, the DOA of the target speaker can be estimated
by tracking the speaker’s face from a 180-degree wide-angle
camera as shown in Fig. 1 (bottom left corner).

Motivated by the success of Conv-Tasnet [45] in speech sepa-
ration, the temporal convolutional network (TCN) architecture,
which uses a long reception field to capture more sufficient
contextual information, is adopted in our separation front-ends.
As shown in Fig. 2, each TCN block is stacked by 8 Dilated
1-D ConvBlock with exponentially increased dilation factors
20 21 . ...27. As shown in the Audio front-end (Fig. 1, top
left corner), the complex spectrum of each microphone array
channel are first concatenated and then fed into a TCN block. The
outputs are concatenated with the IPD and AF features and then
fed into another TCN block to compute the audio embeddings
A e RT*P,

B. Visual Modality

For the visual modality, as shown in the bottom left corner
of Fig. 1, the lip region of the target speaker obtained by face
tracking is fed into the Visual front-end (Fig. 1, bottom left
corner in green) followed by the Visual block (Fig. 1, bottom
middle in gray) to compute the visual embeddings V € RT*P.
The network structure of the Visual front-end is similar to the
one proposed in [50], which consists of a spatio-temporal con-
volution layer (Conv3D) and a 18-layer ResNet [51] to capture
the spatio-temporal dynamics of the lip movements. The Visual
block consists of 5 TCN blocks. Following the work in [31], [52],

Output 1
/
‘ dilation=27 / Ty
/ X 1 Conv
[ Dilated 1-D ConvBlock ] / )
T // Normalization
P ! £
4 dilation=2" / PReLU <
/ (@]
[ Dilated 1-D ConvBlock }\ D-éonv %
[ dilation=2° \\\ N ; . %
[ Dilated 1-D ConvBlock ] \\ orma*lzatlon =
\ PReLU
\\\ *
\ 1x 1 Conv

Input T

Fig. 2. Tllustration of the architecture of the temporal convolutional network
(TCN) Block. Each dilated 1-D ConvBlock consists of a 1x1 convolutional
layer, a depth-wise separable convolution layer (D—Conv) [48], with PReLU [49]
activation function and normalization added between each two convolution
layers. Skip connection is added in each dilated 1-D ConvBlock.

[53], the Visual front-end is pretrained on the lipreading task
as described in [50]. The visual modality can provide not only
discriminative information to facilitate phone classification, but
also crucially additional cues to track and separate the target
speaker from interfering sources of sound.

C. Modality Fusion

In order to effectively integrate the audio and visual modali-
ties, a careful design of the modality fusion scheme is required.
Based on the investigation of different modality fusion methods
in our previous work [40], a factorized attention-based modality
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fusion method, which has been proven to outperform the most
commonly used feature concatenation method [27]-[29], [54]
in the audio-visual speech separation front-ends, is adopted in
this work.

As shown in Fig. 1 (middle up, in light gray), the acoustic
embedding A(t) at frame index ¢ is first factorized into K
acoustic subspace vectors by a series of parallel linear trans-
formations P4} € RP*P and the visual embedding V() is
mapped into a K dimensional vector v(t) = [v1(t), ..., vk (t)]
by projection matrix P¥ € RP*X in the factorized attention
method as follows:

lac(t), ...,ax(t)] = [P4, ..

v(t) = Softmax(PVV(t)).

LPRIA(®) (13)

(14)

Then the fused audio-visual embedding AV (¢) € R? is ob-
tained by using the weighted sum of the acoustic subspace
vectors:

AV(1) = a( 3 vk(t)ak(t)) (15)
k=1

where o(+) is the sigmoid function.

D. Channel Integration

As discussed in Section II, three different audio-visual multi-
channel integration approaches are investigated in this work.

a) TF masking: The diagram of the TF masking approach
is illustrated in Fig. 1 (top right, in light yellow). The hidden
outputs of the Target block (Fig. 1, middle up in gray) are fed
into a complex linear layer to estimate the complex mask of
the reference channel. The structure of the complex linear layer
is shown in Fig. 1 (top right in orange), which consists of two
linear layers. One is used to estimate the real part R{M (¢, f)}
of the complex mask, the other is used to estimate the imaginary
part Z{M (t, f)}. Based on the estimated TF mask, the output
complex spectrum is then computed via 2.

b) Filter&Sum: The diagram of the Filter&Sum approach is
shown in Fig. 1 (right middle, in light blue). Different from the
TF masking approach, the hidden outputs of the Target block are
fed into a series of complex linear layers to estimate the time
variant beamforming filter parameters W,.(¢, f) corresponding
to each channel frame by frame. The frequency domain beam-
forming outputs are then computed using 4.

¢) Mask-based MVDR: The mask-based MVDR approach is
demonstrated Fig. 1 (right bottom, in green). Different from
the TF masking and the Filter&Sum approaches, an additional
Noise block (Fig. 1, middle bottom in gray) containing 3 TCN
blocks and a complex linear layer is adopted to estimate the
complex TF mask M" (¢, f) for the noise signals. As discussed
in [4], estimating the TF masks for both the target and noise
signals can improve the speech separation performance of the
mask-based MVDR approach. With the TF masks of the target
and interference speech, the beamforming filter parameters are
calculated using Equation (8) and (9) described in Section II-E.
In this work, we assume that the location of the speakers are
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Visual Front-end

—— Forward
—— Backward

Recognition back-end

Separation
front-end

Fig.3. Jointfine-tuning: VL rpc and VLg,; s n g represent the gradients of
speech recognition i.e CTC, LF-MMI and speech separation Si-SNR objective
functions respectively, “LFB” denotes log filter bank acoustic features.

unchanged within each utterance, which is common in meet-
ing and restaurant environment. Therefore, in the mask-based
MVDR approach, the beamforming filter parameters W ( f) are
fixed with a beamforming analysis window, for example, an
utterance of speech in this work.

In all the three channel integration methods, the target speech
complex spectrum extracted by each channel integration method
is used to compute the target speech waveform using the inverse
STFT (iSTFT) operation.

IV. AUDIO-VISUAL MULTI-CHANNEL SPEECH RECOGNITION

In this section, we first introduce our audio-visual speech
recognition back-ends and then describe the approaches to inte-
grate the separation and the recognition components.

A. Audio-Visual Speech Recognition Back-End

Extensive audio-visual speech recognition technologies have
been conducted in recent years and demonstrated their efficacy
in improving speech recognition performance under both clean
and adverse conditions [32], [35], [41], [42], [55]-[58]. Follow-
ing [52], in this work, the convolutional long short-term memory
fully connected neural network (CLDNN) [59] is adopted as the
recognition back-end system architecture. As shown in Fig. 3
(left, in dark gray), the log filter bank features are first calcu-
lated from the separated target speech waveform before being
concatenated with the visual features extracted using the Visual
front-end. The concatenated features are fed into the CLDNN
network to estimate the frame level posteriors. To optimize
the model parameters in the recognition back-end, two widely
used training criteria i.e. CTC [36] and LF-MMI [37], [60] are
investigated in this work:

1) CTC: The CTC approach uses a blank symbol, which can
appear between the modelling units (graphemes, phonemes), to
define an objective function that sums over all possible align-
ments of the reference transcription with the input sequence of
speech frames:

U T
Lere =Y log Y J[P@r0O")  16)

u=1 v, i e{QUe} t=1

where O" = [OY, ..., O%] represents the input utterance of T
frames and €2 denotes the grapheme (phoneme) symbol set.
w = [r}, ..., 4] represents a possible alignment between O
against the CTC output token 73, which are based on either

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:36:14 UTC from IEEE Xplore. Restrictions apply.



YU et al.: AUDIO-VISUAL MULTI-CHANNEL INTEGRATION AND RECOGNITION OF OVERLAPPED SPEECH

[Pt}

a grapheme (phoneme) symbol, or a special null emission “e
token, as considered in this paper.

2) LF-MMI: Sequence discriminative training techniques,
represented by lattice-free MMI [37], have defined state-of-the-
art hybrid ASR system performance in the past few years. The
MMI criterion is a discriminative objective function which aims
to maximize the probability of the reference transcription while
minimizing the probability of all other transcriptions:

U
Lyyvr = Z log

u=1

P(O|H")P(H")
Y a. P(O[H*)P(HY)

where H" represents any possible transcriptions. In recent re-
search [60], [61], it has been shown that the end-to-end LF-MMI
approach can outperform CTC based approach using either
phoneme or grapheme modelling units on clean speech.

B. Integration of the Separation and Recognition Components

Traditionally, the speech separation and recognition compo-
nents are developed separately and then used in a pipelined
fashion [4], [21]-[23]. However, two issues arise with such
approach: 1) the cost function mismatch between separation
and recognition components cannot guarantee the separated out-
puts target to optimal recognition performance; 2) the artifacts
created by separation can increase modeling confusion of the
recognition component and lead to performance degradation.

According to [25], [26], [43], [62], tight integration of the
two components with joint fine-tuning can address above two
issues. In this work, we investigated three variants of fine-tuning
methods: 1) fine-tuning the recognition system only on the
enhanced signals; 2) jointly fine-tuning the separation and the
recognition components using the recognition cost function; 3)
jointly fine-tuning both systems using a multi-task criterion,
which interpolates the recognition and Si-SNR cost functions:

L =Lrec +alsi_sNR, (17

where « is a manually tuned weight of the Si-SNR loss and
Lrec can be either Lore or Lrp_par cost function. As
shown in Fig. 2, the gradient of the recognition cost is propagated
into the separation front-end to update the model parameters of
the entire system.

V. EXPERIMENT SETUP

In this section, we first introduce the details of the corpus
adopted in this work. Second, we describe the details of gener-
ation process of the multi-channel overlapped speech by either
simulation or replay. Third, we explain how we introduce visual
occlusion into the video. Finally, we introduce the implementa-
tion details of the proposed systems.

A. LRS2 Corpus

The Oxford-BBC Lip Reading Sentences 2 (LRS2) cor-
pus [63], which is one of the largest publicly available corpora
for audio-visual speech recognition, is adopted in our experi-
ments. This corpus consists of news and talk shows from BBC
program, which is a challenging task since it contains thousands
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7cm 6cm 5cm  4cm 3cm 2cm 1em

Fig. 4. The architecture of the microphone array used in the simulation and
replay data recording.

of speakers with large variation in head pose. The LRS2 corpus
is divided into three subsets, i.e. Pre-train, Train-val
and Test set. In our experiments, the Pre-train and Train-Val
subsets are combined for system training. More statistic details
of the LRS2 corpus can be found in [41].

B. Simulated Overlapped Speech

Since there is no publicly available audio-visual multi-
channel overlapped speech corpus, we simulated the multi-
channel overlapped speech in our experiments based on the
LRS2 corpus. Details of the simulation process is described in
Algorithm 1. A 15-channel symmetric linear array with non-
even inter-channel spacing is used in the simulation process, as
shown in Fig. 4. Reverberation is also added in the simulated data
by convolving the single channel signals with the Room Impulse
Responses (RIRs) generated by the image-source method [64].
The room size is randomly selected ranging from 4x4x2.5 m
3 to 10x8x6 m? (lengthx widthxheight) and the reveberation
time T60 is sampled from a range of 0.05 to 0.7s. The average
overlapping ratio of the simulated utterances is around 85% and
SIR is around OdB. The simulated data is divided into three
subsets with 14.2k, 4.6k and 1.2k utterances respectively for
training (200h), validation (2h) and evaluation (0.5h).

Algorithm 1: Data simulation process of multi-channel
overlapped speech
Input: single channel non-overlapped LRS2 speech
for utterance in LRS2 do
1) Randomly select an interfering utterance from
another speaker in LRS2 corpus
2) Sample a SIR uniformly from (-6,0,6) dB
3) Randomly generate microphone array and speakers’
position (Distance between speakers and array is 1-5m)
4) Scale the target and interferring sources with the
sampled SIR
5) Generate mixed speech per channel with overlapping
ratio randomly from 60% to 100%
end for
Output: multi-channel overlapped speech

C. Replayed Overlapped Speech

To further evaluate the performance of the proposed systems
in realistic environment, a replayed test set with 1.2k (0.5h)
utterances recorded in a 10x5x3 m3 meeting room is also
used in our experiments. As shown in Fig. 5, two loudspeakers
are used to replay different utterances of the LRS2 test set
simultaneously to generate overlapped speech. The structure
of the microphone array used during recording is the same
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loudspeaker 2

icrophone array

Fig. 5. Replayed recording of overlapped LRS2 test set.

as that used in simulation. The target and interfering speakers
are located at following directions related to the mounted cam-
era, i.e. (15°,30°), (45°,30°), (75°, 30°), (105°, 30°), (30°, 60°),
(90°,60°), (120°,60°) and (150°,60°), where the distance be-
tween the loudspeakers and microphones ranges from Im to
1.5m. In the replayed data, the approximated DOA of the target
speaker is obtained by the 180 © camera mounted on top of the
microphone array. The average overlapping ratio of the replayed
overlapped speech is around 80% and SIR is around 1.5dB.

D. Visual Occlusion and Low-Resolution

As discussed in Section I, the performance of audio-visual
speech separation and recognition systems crucially depends on
the quality of the video input fed into these systems. In the ex-
periments of this paper, an ablation study is conducted to assess
the impact on system performance due to two forms of video
input quality degradation often found in real world applications,
before a set of techniques designed to improve robustness against
such degradation are evaluated and their performance analysed.
First, low-resolution visual inputs were generated by gradually
reducing the original video resolution from 160 x 160 pixels
to 120 x 120, 80 x 80, 60 x 60, 40 x 40, 30 x 30, 20 x 20,
and eventually down to 10 x 10 pixels, as shown in Fig. 6(a).
Second, the video frames were occluded by applying randomly
sized and positioned square patches to the lip region of each
speaker. The size of the occluded lip regions randomly varies
from 45 x 45 to 60 x 60 pixels. For each utterance, occlusion
is applied to a randomly sampled window of consecutive video
frames. The ratio between uncovered and occluded frames is
randomly sampled from the following settings: 20%, 40%, 60%
and 80%. As such video occlusion is applied to a contiguous
area of the lip region, it is regarded as a more naturalistic form
of video quality degradation in comparison with the frame level
drop-out approach [35], [40].

E. Implementation Details

Features: 1) In the separation front-ends (Fig. 1, top left
corner), the 257-dimensional complex spectrum of each channel
is extracted using a 512-point FFT with 32ms hanning window
and 16ms frame rate. In our implementation, the STFT operation
is implemented as a convolution layer to enable on-the-fly
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160 x 160 120 x 120 80 x 80
40 x 40 30 x 30 20 x 20 10 x 10

(a) Low-resolution visual inputs

(b) Visual occlusion

Fig. 6. Examples of (a) low-resolution visual input by gradually reducing the
original video resolution from 160 x 160 pixels to 10 x 10 pixels; (b) occluded
visual input with randomly sized (45 x 45 to 60 x 60 pixels) and positioned
square patches applied to the lip region.

computation. The AF and IPD features are computed using 9
microphone pairs (1,15), (2, 14), (3, 13), (1, 7), (12, 4), (11, 5),
(12, 8), (7, 10) and (8, 9). These microphone pairs are selected to
sample different spacing between microphones following [15],
[33]. 2) The 40-dimensional log filter bank features extracted
using a 40ms window and 10ms frame rate are adopted as the
input feature of the recognition back-end. Similar to the STFT
operation, the log filter bank extractor is also implemented as
a layer in the network to enable on-line extraction. 3) For the
visual front-end, the original 160x 160 video frames in LRS2 are
centrally cropped by a 112x 112 window and then up-sampled
to align with the audio frames via linear interpolation.
Separation front-end: In the separation front-ends (Fig. 1,
middle, in gray), for each TCN block (Fig. 2), the number of
channels in the 1 x 1 Conv layer is set to be 256 for every
Dilated 1-D ConvBlock. As for the D-Conv layer, the kernel size
is set to be 3 with 512 channels. The Visual front-end (Fig. 1,
bottom left corner in green) uses the same hyper-parameter
settings as described in [50]. Following [33], the number of
the acoustic subspace K is set to be 10 with PV ¢ R2%6x10
and P7! € R2°6%2%6 ip the factorized attention layer. The output
dimenswn of the complex linear layer is set to be 257.
Recognition back-end: In our experiments, the CTC and LF-
MMI based recognition back-ends use the same neural network
structure, which consists of four 2-dimensional convolutional
layers with channel sizes (64, 64, 128, 128) and kernel size
3x3 followed by four 1280 hidden units BLSTM layers and
a softmax layer. Context-free grapheme units are used as the
output layer targets in both the CTC and LF-MMI based models.
The end-to-end LF-MMI criterion is implemented following the
recipe! in [38]. The language model (LM) used in recognition is

Thttps://github.com/pytorch/examples/
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TABLE I
PERFORMANCE OF SINGLE CHANNEL ASR AND AVSR SYSTEMS ON ECHO
FREE AND REVERBERANT SPEECH WITH OR WITHOUT OVERLAPPING. “SIMU”
AND “REPLAY”” DENOTES THE SIMULATED AND THE REPLAYED TEST DATA. {
DENOTES A STATISTICALLY SIGNIFICANT IMPROVEMENT IS OBTAINED OVER
THE CORRESPONDING ASR BASELINE

Sys Data Criterion +visual - WER (%)
simu replay
1 r X 11.04
2 Echo free core v 9.77
3 non-overlapped X 9.44
Lrp—
4 LF-MMI v 855"
5 r X 15.33
6 Reverberant cre v 13.93%
7 non-overlapped X 14.36
g LrLFp—MMI v 1161t
9 r X 75.34 80.55
10 | raw channel 1 cre v 32.06" | 31.93
11 overlapped r X 65.44 71.03
12 LE=MMI v 28921 | 28.89f

a4-gram LM constructed on 2.33M words of the LRS2 Train-
val and Pre-train data transcripts.

All of our models are trained using 4 NVIDIA Tesla P40
GPU cards. For all results presented in this paper, matched pairs
sentence-segment word error (MAPSSWE) based statistical sig-
nificance test was performed at a significance level a= 0.05.

VI. EXPERIMENTAL RESULTS

In this section, we describe the experiment results. First, to
investigate the effectiveness of visual features extracted from
the video frames, we compare the audio-only and audio-visual
speech recognition systems without explicit speech separation
components on non-overlapped and overlapped speech. Second,
to tightly integrate the separation front-end and recognition
back-end, we investigate the performance of three different
integration methods in the proposed systems. We use the orig-
inal LRS?2 utterances as the echo free non-overlapped speech.
The reverberant non-overlapped speech is simulated from the
original LRS2 data using image-source method. Third, we sys-
tematically investigate the impact of the visual features on the
proposed system to confirm the strength and importance of the
visual information. Finally, we investigate the impact of visual
occlusion on the proposed systems.

A. Speech Recognition Without Separation Front-End

Table I presents the WER results of the CTC and LF-MMI
based ASR and AVSR systems without using microphone array
and explicit speech separation components on echo free and
reverberant speech with or without speech overlapping.

Several trends can be observed from Table I:

1) For both the CTC and LF-MMI based systems, using
visual information can significantly improve the recog-
nition performance over the audio-only systems by up
to 1.27% (sys.1 vs. sys.2) and 2.75% (sys.7 vs. sys.8)
absolute WER reduction on echo free and reverberant non-
overlapped speech. Especially, the audio-visual recogni-
tion system largely outperforms the audio-only system by
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TABLE II
SI-SNR RESULTS OF TF-MASKING, FILTER&SUM AND MASK-BASED MVDR
SEPARATION FRONT-ENDS

Sys | AF +visual | TF masing  Filter&Sum MVDR
1 v X 9.40 10.87 8.73
2 X 4 9.77 11.02 8.84
3 v v 10.16 11.60 9.03

up to 33.28% and 48.62% (sys.9 vs. sys.10) absolute WER
reduction on simulated and replayed overlapped speech re-
spectively, which proves the effectiveness of the extracted
visual features on overlapped speech recognition.

2) In our experiments, both the reverberation and the in-
terfering speech are introduced into the simulated and
the replayed multi-channel overlapped speech. Compared
with the large performance degradation over 50% absolute
WER increase caused by speech overlapping (sys.5 vs.
8ys.9, sys. 7 vs. sys.11), the reverberation only introduces
around 4% absolute WER degradation against the echo
free speech (sys.1 vs. sys.5, sys.3 vs. sys.7). This indicates
that overlapping speech (sys.9-12) is the more dominant
contributing factor leading to large performance degra-
dation against clean speech based recognition systems
(sys.1-4) than reverberation (sys.5-8) on the LSR2 data
considered in this paper.

3) The LF-MMI based systems outperform the CTC based
systems on both non-overlapped and overlapped speech
with and without visual modality in our experiments.

Based on the second observation, we focus on solving the

speech overlapping issue in this work. Since we are not aiming
atdereverberation in our overlapped speech recognition systems,
the WER results on the reverberant non-overlapped speech
(sys.5-8) can be defined as the upper bound for all subsequent
experiments.

B. Performance of Audio-Visual Speech Separation
Front-Ends

The Si-SNR results of the TF-masking, filter &sum and mask-
based MVDR separation front-ends are shown in Table II. Sev-
eral trends can be observed in Table II:

1) Using visual features in the separation front-ends can

improve the the Si-SNR performance (sys.1 vs. sys.3).

2) Separation front-ends using only visual features have
comparable results with separation front-ends using
only AFs.

3) Compared with the TF-masking and filter &sum separation
front-ends, the mask-based MVDR separation front-ends
show relatively lower Si-SNR. One possible explanation
is that the mask-based MVDR benefits from the distor-
tionless constraint which is not adopted in the other two
approaches.

Fig. 7 shows example spectra of target clean, overlapped,
audio-only separated, and audio-visual separated speech seg-
ments obtained using the TF masking based speech separation
front-end. The spectrum portions circled using yellow dotted
lines in (c) and (d) represent the interfering speaker’s speech,
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TABLE III
PERFORMANCE OF DIFFERENT FINE-TUNING METHODS CONDUCTED ON AUDIO-VISUAL MULTI-CHANNEL SPEECH RECOGNITION SYSTEMS. | AND { DENOTES A
STATISTICALLY SIGNIFICANT IMPROVEMENT IS OBTAINED OVER THE PIPELINED CTC (SYS.2) AND LF-MMI (SYS.6) SYSTEMS

Fine-tuning TF masking Filter&Sum MVDR
Sys o Si-SNR WER Si-SNR WER Si-SNR WER

Criterion Sep.  Recg. simu simu replay simu simu replay simu simu replay
1 Not Applied 10.16 26.1 28.0 11.60 235 309 9.03 26.1 25.8
2 Lot X v/ 10.16 229 232 11.60 192 241 9.03 193 17.3
3 LoTe v/ v 8.15 1931 18.0f 6.04 1727 19.9f 4.14 18.67  16.97
4 Lere +alsi—SNR v/ v/ 8.50 18.67  18.07 9.17 16.1F  19.2f 7.72 1841 16.97
5 Not Applied 10.16 238 262 11.60 21.1 28.1 9.03 23.1 2238
6 Lrr—mMI X v/ 10.16 207 214 11.60 182 251 9.03 203  20.1
7 LrLr—_MMI v/ v 8.03 177 18.7% 9.20 16.9f  22.4% 5.65 163%  15.5%
8 | Lrr—mmr+alsi—snr v v 8.89 177 18.3% 1073 | 16.6%7  21.6F 8.40 16.1%  15.0%

(b) Target clean

(d) Audio-visual

(c) Audio-only

Fig.7. Example spectra of overlapped, target clean, audio-only separated, and
audio-visual separated speech segments obtained using the TF masking based
speech separation front-end of Fig. 1(a). The spectrum portions circled using
yellow dotted lines in (c) and (d) represent the interfering speaker’s speech,
which is almost removed in (d) after applying audio-visual speech separation.

which is largely removed in (d) after applying audio-visual
speech separation.’

C. Performance of Different Fine-Tuning Methods

The WER results of the audio-visual multi-channel system
using different fine-tuning approaches aiming for integrating
the separation front-end and recognition back-end are shown
in Table II. In these experiments, the visual features are used in
both the separation and the recognition components, while the
AF features are adopted in the separation front-end only. Before
integration, both the separation and the recognition components
are trained separately. In the pipelined systems (sys.2, sys.5),
the recognition back-ends are fine-tuned using the separation
outputs, while the separation front-ends are kept unchanged.
In the jointly fine-tuned systems, both the separation and the
recognition components are fine-tuned using the recognition
cost function (sys.2, sys.5) or multi-task criterion (sys.3, sys.6).
For the CTC based system, « is set as 0.1 for the TF masking
approach and 1 for the Filter&Sum and mask-based MVDR
approaches. For the LF-MMI system, « is set as 0.01 (larger
« will lead to performance degradation) for all the three channel
integration approaches.

Several trends can be observed from Table III:

1) Compared with the audio-visual speech recognition sys-

tems without any separation front-ends in Table I (sys.10,

2More examples of audio-visual multi-channel speech separation can be found
in: https://yjw123456.github.io/ Audio- visual-Multi-channel- Integration-and-
Recognition-of-Overlapped-Speech /

sys.12), using the proposed audio-visual separation front-
ends for these fixed recognition back-ends (sys.1, sys.5 in
Table II) reduce the WERS by up to 8.56% and 6.09% on
the simulated and replayed data respectively.

The jointly fine-tuned systems consistently outperform
the pipelined systems for all the three channel integration
methods (sys.2 vs. sys.3, sys.6 vs. sys.7), which confirms
our arguments in Section III-B.

Compared with the jointly fine-tuned systems using only
the recognition cost, systems using multi-task criterion
only provide marginal recognition improvements (sys.3
vs. sys.4, sys.7 vs. sys.8).

Different from the trend in Table I, the LF-MMI based
jointly fine-tuned systems do not always outperform the
CTC based systems, especially on the replay test set.
Jointly fine-tuning the separation and the recognition com-
ponents using only the speech recognition cost degrades
the speech separation performance in terms of Si-SNR
(sys.2 vs. sys.3, sys.6 vs. sys.7) by up to 4.9dB. However,
jointly fine-tuning these two components by multi-task
criterion only degrades the Si-SNR performance by up to
1.27dB (sys.2 vs. 8ys.4, sys.6 vs. sys.8).

Considering the average performance contrast between the
CTC and LF-MMI costs fine-tuned systems over three beam-
forming methods on both the simulated and the replayed data
in Table II (sys.3 vs. sys.6), we adopt jointly fine-tuned systems
using only the CTC cost function in all subsequent experiments.

2)

3)

4)

5)

D. Performance of Audio-Visual Multi-Channel AVSR Systems

In this section, we systematically investigate the performance
improvements attributed to the visual modality in three types
of audio-viusal multi-channel overlapped speech recognition
systems featuring TF masking, Filter&Sum and mask-based
MVDR neural beamformers. The visual modality’s impact on
system performance is further analysed in a more advanced
AVSR system configuration when it is used in combination
with the angle features described previously in Section III-A.
To compare the performance between the conventional channel
integration methods with the NN based methods, the traditional
frequency domain delay and sum (Delay&Sum) beamformer
is also adopted in this experiment. The steering vectors used
in such beamformer are computed based on the ground truth
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TABLE IV
PERFORMANCE OF AUDIO-ONLY AND AUDIO-VISUAL OVERLAPPED SPEECH
RECOGNITION SYSTEMS USING VARIOUS CHANNEL INTEGRATION METHODS.
THE SEPARATION AND THE RECOGNITION COMPONENTS ARE JOINTLY
FINE-TUNED USING THE CTC LosS. “AF” DENOTES ANGLE FEATURE. T, {
AND * DENOTES A STATISTICALLY SIGNIFICANT IMPROVEMENT IS OBTAINED
OVER THE TF MASKING (SYS.5), FILTER&SUM (SYS.10) AND MASK-BASED
MVDR (SYS.15) AUDIO-ONLY BASELINE SYSTEMS

Sys \ Separation | Recognition | WER(%)

\ method [ AF [ +visual | +visual | simu [ replay
| raw channel | R
3 v/ E X 4925 | 4434
4 ‘ Delay&Sum v ‘ - ‘ v ‘ 25,81 ‘ 2446
5 v/ X X 3312 | 4675
6 X v X 24,641 | 26.497
7 TF masking v v X 23,17t | 23.591
8 X v/ v/ 21327 | 21.527
9 v/ v/ v 19.257 | 18.03f
10 v/ X X 3024 | 43.83
11 X v X 23,09 | 24.67%
12 Filter&Sum v/ v X 21.77% | 24.66%
13 X v/ v/ 21.02F | 20.02F
14 v/ v/ v 17217 | 19.87%
5 v/ X X 2538 | 39.07
16 X v X 23.96* | 23.48*
17 | Mask-based MVDR | v/ X 2341% | 21.17*
18 X 4 4 1734 | 16.21%
19 v/ v/ v/ 18.57* | 16.85*

DOA for the simulated data and the approximated DOA for the
replayed data.

From Table IV, several trends can be observed:

(1) Adding visual features can significantly improve the
recognition performance on both the simulated and the
replayed overlapped speech by up to 13.87% and 28.72%
(sys.5 vs. sys.9), 13.03% and 23.96% (sys.10 vs. sys.14),
8.04% and 22.86% (sys.15 vs. sys.18) absolute WER re-
duction for the TF masking, Filter&Sum and mask-based
MVDR approaches respectively.

(2) When we only use the visual, but not the angle features in
the proposed audio-visual multi-channel AVSR systems
(sys.8, sys.13, sys.18), similar recognition performance
is retained on both simulated and replayed data for all the
three channel integration methods (sys.8 vs. sys.9, sys.13
vs. sys.14, sys.18 vs. sys.19).

(3) Using visual information in both the separation and the
recognition back-ends performs better than using visual
information only in the separation front-ends. (sys.7 vs.
8ys.9, sys.12 vs. sys.14, sys.17 vs. sys.19)

(4) When we only use the angle features, a large performance
gap between the simulated and the replayed data can be
observed (sys.5,10,15). Since we use the ground truth
DOA for the simulated data and approximated DOA for
the replayed data, this phenomenon indicates that these
three systems (sys.5,10,15) are sensitive to the precision
of the DOA estimation. However, by adding visual fea-
tures (sys.6-9, sys.11-14, sys.16-19), such performance
gap is narrowed down greatly, which further confirms the
efficacy of the visual modality.
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(5) The NN based separation front-ends (sys.5-19) outper-
form the conventional Delay&Sum beamformer (sys.3-
4), which confirms the strength of the NN based chan-
nel integration methods. In addition, compared with the
TF masking (sys.5-9) and Filter&Sum (sys.10-14) ap-
proaches, the mask-based MVDR systems (sys.15-19)
show better performance on the replayed data set.

E. Impact of Low-Resolution Visual Inputs

In this section, we further investigate the robustness of the
proposed TF masking and mask-based MVDR multi-channel
AVSR systems in Table IV (sys.6-9 and sys.16-19) when lower
resolution video inputs are used, as previously described in
Section V-D. Fig. 8 shows the relationship between WER and
visual input resolution for the TF masking and the mask-based
MVDR based AVSR systems. Several trends can be observed
from Fig. 8:

1) Although low-resolution visual inputs can cause perfor-
mance degradation, the proposed systems consistently
outperform the baseline audio-only systems even when
the video resolution is aggressively reduced to as low as
40 x 40 pixels down from the full resolution of 160 x 160.

2) The mask-based MVDR ASR and AVSR systems are more
robust to low resolution visual inputs than the TF masking
based comparable ASR and AVSR systems.

F. Impact of Visual Occlusion

In this section, we further investigate the robustness of the
proposed AVSR multi-channel recognition systems when the
video data quality is degraded by visual occlusion, as previously
described in Section V-D.

As shown in Table V, three methods are considered to improve
the system performance with occluded visual inputs:

1) Using angle features: With the DOA information con-
tained by angle features, the negative influence of visual input
occlusion can be alleviated. In the TF masking systems, using AF
consistently improves the system robustness to visual occlusions
(sys.4 vs. sys.5, sys.8 vs. sys.9, sys.12 vs. sys.13). For the mask-
based MVDR systems, angle features show their effectiveness
when the occlusion rate is larger than 60% (sys.17 vs. sys.18,
Sys.25 vs. sys.20).

2) Using multi-style occluded data: In order to improve the
generalization to video occlusion at various percentage settings
described in Section V-D, a 400-hour multi-style audio-visual
training data set containing a 200h subset with video occlusion
applied and the remaining half based on the original 200h data
without occlusion was used to fine-tune the TF masking and the
mask-based MVDR multi-channel AVSR systems in Table IV
(sys.6-9 and sys.16-19) using the CTC cost function. A general
trend can be found in Fig. 9 (systems fine-tuned using multi-style
occluded data shown on red lines) and Table V: the multi-style
occluded data fine-tuned audio-visual multi-channel recognition
systems (sys.13 and sys.26 in Table V) consistently outperform
the baseline audio-only systems (Sys.1, 14 in Table V) even
when using occluded video input with the lip region randomly
covered up to 80% for the TF masking (sys.1 vs. sys.13) and 60%
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Fig. 8.
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Mask based MVDR

—8— AVSE+AVSR

- @ AVSE+ASR

—&— AF+AVSE+AVSR
-+h- AF+AVSE+ASR
== AF+ASE+ASR

60x60 40x40 30x30 20x20
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WER(%) of TF masking and mask-based MVDR based AVSR systems of Table IV using different visual inputs resolutions ranging from 160 x 160 to

10 x 10. “AVSE” and “AVSR” denote using visual modality in the separation front-end and recognition back-end respectively, “AF+" stands for optionally using

angle features.

TABLE V
WER(%) OF CTC BASED TF MASKING AND MASK-BASED MVDR BASED AVSR SYSTEMS WHEN EVALUATED ON DATA WITH VISUAL OCCLUSION RANGING FROM
0% UP TO 80% COVERAGE OF THE LIP REGION. { AND { DENOTES A STATISTICALLY SIGNIFICANT IMPROVEMENT IS OBTAINED OVER THE TF MASKING (SYS.1)
AND MASK-BASED MVDR (SYS.14) BASED AUDIO-ONLY SYSTEMS

Svs Separation Recognition Training set Test set WER(%)

s method [ AF [ +visual +visual no-occ occ sts 0% 20% 40% 60% 80%
I 4 X X 200h X occ 33.12

2 X v/ X 24,647 30027 3491 390.88 4452
3 v v X 200h X oce 23.171 27.887 3248 36.56  39.77
4 X v v/ 21321 28307 34.86 4042 4483
5 v v v/ 19.257  24.827  30.007 3339  37.90
6 TF maski X v/ X 24647  31.067 3443 3633  39.52

masking +

7 v v X 200h x | in-painting | 2317 29.637  31.137 3384 3522
8 X v v 21321 2980t 3394 3803 4191
9 v/ v/ v/ 19.257  26.22F 29727 32177 34.28
10 X v/ X 24437 27577 29.8T 32.39 34.44
11 v v/ X 200h  200h oce 23391 255% 27541 29447 30.87T
12 X v/ v 20757 2446t 28531 3276 35.12
13 v v v 18,571 21.02F 23787  26.047  28.21%
14 v/ X X 200h X occ 25.38

15 X v/ X 23967 2455F 2670 28539  31.20
16 v v X 200h X oce 23.41%  2381F  23.99% 2455 2536
17 X v v 17.34F 2192 2503  29.62  34.01
18 v/ v/ v/ 18.57  22.66t 2566 2877  31.61
19 1 Vask based MVDR X v/ X 2396  25.03 2550 2679 2735
20 ask-base v/ v/ X S 2341% 2428t 24.47F 24417 24.47F

200h X in-painting

21 X v/ v 17.3¢F  2211%  24.64F 2772 2954
22 v v v/ 18.57  22.64% 2547 2777 2913
23 X v/ X 23.62%  24.17F 2563 2553  27.16
24 v/ v/ X 200h  200h oce 22.85% 2335%  23.62F  24.16%  24.27F
25 X v v 16.20F  19.10f 21.82F 23.75%  26.74
26 v v v 18.08%  2027F 2227 23.60f  25.80

for the mask-based MVDR (sys.14 vs. sys.26) multi-channel
systems.

3) In-painting: A visual in-painting neural network follow-
ing [39] was trained using the occluded Train-val set of
LRS2 to in-paint the occluded visual image. Fig. 10 shows some
examples of the occluded images before and after being restored
using the in-painting approach. If the input image is occluded,
the in-painting network can restore the occluded region with

some distortion. In contrast, if the video is not occluded, the
in-painting network will keep the image almost unchanged.
From Fig. 9 (line in green vs. line in blue) and Table V (sys.2-5
vs. 8ys.6-9, sys.15-18 vs. sys.19-22) the following can be ob-
served: using in-painting neural network can improve both the
TF-masking and the mask-based MVDR multi-channel AVSR
systems’ robustness to visual occlusion when the occlusion rate
is 60% or above.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:36:14 UTC from IEEE Xplore. Restrictions apply.



YU et al.: AUDIO-VISUAL MULTI-CHANNEL INTEGRATION AND RECOGNITION OF OVERLAPPED SPEECH

TF Masking
45

=@ AVSE+AVSR (sysd)

~@- AVSE+AVSR-INPAINT (sys8)

@~ AVSE-+AVSR-FT (sys12) -
40 =& AF+AVSE+AVSR (sys5) -
—A- AF+AVSE+AVSR-INPAINT (sys9) P

—— AF+AVSE-+AVSR-FT (sys13) -~
35 { = AFHASEFASR (sys1) -~

15
0%

40% 60%

Occlusion Ratio

20% 80%

Fig. 9.

2079

Mask based MVDR

45
@~ AVSE+AVSR (sys17)
~@ AVSE+AVSR-INPAINT (sys21)
—@— AVSE+AVSR-FT (sys25)

40 A —k— AF+AVSE+AVSR (sys18)
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—A— AF-+AVSE+AVSR-FT (sys26)

35 4 — = AF+ASE+ASR (sys14)

40% 60%

Occlusion Ratio

20%

15
0%

80%

WER(%) of the CTC based TF masking and mask-based MVDR based AVSR systems of Table V when evaluated on data with visual occlusion ranging

from 0% up to 80% coverage of the lip region. “AVSE” and “AVSR” denote using visual modality in the separation front-end and recognition back-end respectively,
“AF+” stands for optionally using angle features, “+FT” denotes fine-tuning the system on multi-style data mixed with original and occluded video inputs,

“+INPAINT” denotes using the in-painting network to restore the occluded video.

(a) Original

(b) Inputs

(c) In-painted

Fig. 10. Examples of (a) original video snapshots; (b) randomly occluded
video; and (c) restored video obtained using the in-painting network.

Several additional trends can be observed from Table V and
Fig. 9:

(1) As shown in Fig. 8, the mask-based MVDR based sys-
tems are more robust to visual occlusion than the 7F-
masking based systems. One possible explanation is that
the mask-based MVDR filter estimation exploits audio-
video information across the entire speech segment and
thus more robust to the partial, if not complete, oc-
clusion being applied to the video data. This is differ-
ent the other beamforming methods where no explicit
constraint on using such longer span spatial-temporal
contexts is enforced.

The multi-style occluded data fine-tuning method out-
performs the in-painting method (line in red vs. line
in green, Fig. 9). One possible explanation is that the
in-painting network only use the visual information from
the current occluded image frame to explicitly recover
the occluded image, while during multi-style occluded
data fine-tuning, both the speech separation front-end
and the recognition back-end will learn the systematic
variability among the occluded videos of the same audio
contents but with different percentage of occlusion. This
allows the resulting TF-masking or mask-based MVDR

2

AVSR systems to implicitly build connection between
the original and occluded data of the same audio and thus
improves their robustness against video occlusion.

VII. CONCLUSION

In this work, we propose an audio-visual multi-channel based
recognition system for overlapped speech. A series of audio-
visual multi-channel speech separation front-ends based on
TF masking, Filter&Sum, and mask-based MVDR are devel-
oped. Jointly fine-tuning approaches are studied to integrate
the separation and the recognition components. The impact
of visual occlusion is also investigated. Experiments suggest
that the proposed system significantly outperforms the baseline
audio-only multi-channel ASR system on overlapped speech
constructed using either simulation or replaying of the LRS2
dataset, which demonstrate the advantages of the visual infor-
mation for overlapped speech recognition. In the future, this
work will be extended to: 1) further integrating an audio-video
de-reverberation component; 2) multi-input multi-output AVSR
systems facilitating speech separation and recognition for multi-
talkers’ speech, 3) more advanced visual occlusion restoration
methods to address visual occlusion issue.
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